The ParLab Stack

Parallel Computing Laboratory

Sarah Bird

May 30, 2013

Bridging the Gap

Easy to write correct programs that run efficiently on manycore

Integrated Software Stack

Hardware

- RAMP Gold
 - Simulation
 - 64 cores
 - FPGA

- RISC-V
 - Implementations written in Chisel
 - Rocket
 - 6 stage in-order
 - Hwacha
 - 64 bit vector core
 - FPGA
 - 2 Rocket
 - 45 nm Chip
 - 1 Rocket, 1 Hwacha
 - 1 Ghz

- x86
- GPGPU
 - Cuda
 - OpenGL

SPARC

RISC-V

x86

PTX

RAMP Gold

FPGA

Chip

Multicore

GPGPU

Operating Systems

- Akaros
 - Cloud OS
- Tessellation
 - Client OS
 - Space-Time Partitioning

Linux

- Two-Level Scheduling
- QoS to Applications
- PACORA

Schedulers

PULSE Lithe Framework to write schedulers **Compose Parallel Runtimes** Earliest Deadline-First Thread Building Blocks Global Round Robin Open MP OpenMP **TBB** EDF GRR Lithe **PULSE** Linux **Akaros** Tessellation **SPARC** RISC-V x86 PTX **FPGA** Chip RAMP Gold Multicore **GPGPU**

SEJITS

Applications

Why Create an Integrated Prototype?

- Encourages Collaboration
- Prevents neglecting important pieces of the problem
- Uncover opportunities for invention by seeing which side of an interface is the best place to satisfy a requirement

- Demonstrate the importance of design simplicity
- Enhance the education of the PhD students in areas beyond their own specialties
- Help with technology transfer by giving concrete examples of our ideas for our colleagues in industry

Forces for Integration

- Design Compatibility
 - Shared Space and Discussions
 - Symbiotic Designs
 - Example: Music and Tessellation
- Customized Support
 - In-house experts helping adapt their design to your problem
 - Examples: Lithe and Tessellation
 CAA and Applications

Preparing the Music Demo on Tessellation OS for the Winter 2011 Par Lab Retreat.

- Motivating Applications
 - Exciting to show your research on run a compelling application
 - Examples: Patterns and MRI
 BFS and RISC-V

Integrated Demos in ParLab History

1	2	3	4	5	6	7	8	9	10	11	12	13		14	15	16	17	18	19		20	21	22	23	24	25		26		27	
Januar	January	January	January	January	May	January	January	January	January	January	January	Ma	У	May	May	January	January	January	Janua	ary	January	May	May	May	May	May		May	-	May	
2010	2011	2011	2011	2011	2011	2012	2012	2012	2012	2012	2012	201	12	2012	2012	2013	2013	2013	201	.3	2013	2013		2013	2013			2013		2013	3
1 1	2		4																19			21	22 22				26	26	26		
		3			6 6	7											17			19				23							
									10						15	16					20				24				27	7 27	27
																		18													
				5			8				12			14	15											25	26	26 2	26 27	7 27	27
1					6 6		8	9				13	13	14			17		19	10								_	26 27		27
					0 0		0	,				15	15	14			17		19	19								20 .	27	21	21
																							22 22				26				
					6 6		8	9				13	13	14			17														
								9																							
					6 6		8					13	13	14			17												27	7 27	27
																			19	19								26	26		
				5								13	13					18												27	
															15						20				24	25		26			
1 1										11	12	13						18	19	19											
1												13						18													
				5						11	12				15						20				24	25		26		27	
1				5	6		8	9	10	11			13	14	15	16	14				20		22		24			26	_	27	
	2	3	4		6		8									16						21		23			26		27		
	_					7																		2.5							
						,						13						18		-								+	+	+	27
												13						18	40	10										-	21
												_							19	19									26	4	
1																															

Stack Redesign

What did rethinking the entire computing stack at once get us?

- Productivity programs can create applications that require efficiency
 - Scale
 - Performance
- Easily target many platforms and features
 - Example: Vector units on RISC-V Chip
- Efficient performance predictibility
 - Interactivity and Responsiveness
 - Realtime Performance

Integrated Demos

- Two Demos to show off the ParLab Stack
- Fun and compelling applications that require efficiency
- Easily target many platforms and features
- Interactivity and Realtime Performance
- Integration!

Music Exploration and Recommendation

- Better Pandora
- Audio Content
 Analysis Framework
- Parallel Browser Big Data Visualization
- Demonstrates Scale and Responsiveness

Music Recommendation and Exploration

- Musical Instrument using a camera
- Music Synthesis
- Vision Applications
- DemonstrateRealtime

Music Recommendation & Exploration Demo

Leo Meyerovich, Katya Gonina, Gage Eads, Eric Roman, Eric Battenberg, Henry Cook, Gerald Friedland

End of ParLab Celebration May 30, 2013

Demo

Music Recommendation Stack

Server Architecture

Music Recommendation Stack

Music Recommendation Stack

